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Abstract  
In this paper, conformance testing of protocols specified as nondeterministic finite state 
machines is considered. Protocol implementations are assumed to be deterministic. In this 
testing scenario, the conformance relation becomes a preorder, so-called reduction relation 
between FSMs. The reduction relation requires that an implementation machine produces a 
(sub)set of output sequences that can be produced by its specification machine in response to 
every input sequence. A method for deriving tests with respect to the reduction relation with 
full fault coverage for deterministic implementations is proposed based on certain properties 
of the product of specification and implementation machines.  
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1  INTRODUCTION 
 



Conformance testing of protocol implementations is often formalized as the FSM equivalence 
problem (Moore, 1956) and (Hennie, 1964). In particular, we are given two machines defined 
over the same input alphabet, one is referred to as the specification machine, the other is 
referred to as the implementation machine. The latter is treated as a black-box, so little is 
usually known about the implementation machine prior to testing; yet one typically assumes 
an upper bound on the number of its states (Gill, 1962). It is required to determine by testing 
whether the two are equivalent. A corresponding test suite is said to be complete with respect 
to equivalence relation in the class of implementation machines within the assumed bound on 
the number of states. The problem of deriving such a test suite for a given deterministic 
specification machine has recently attracted close attention in the literature (Vasilevski, 1973), 
(Chow, 1978), (Sidhu and Leung, 1989), (Fujiwara, Bochmann et al. 1991), (Ural, 1992), 
(Bochmann and Petrenko, 1994), (Yannakakis and Lee, 1995), and (Petrenko and Bochmann, 
1996). Here we take a step further addressing a more general problem of testing a so-called 
reduction relation between FSMs (Petrenko, Bochmann, and Dssouli, 1993) and (Petrenko, 
Yevtushenko, and Bochmann, 1994). Specifically, we assume that an implementation machine 
is deterministic, but its specification machine is not necessarily deterministic. In this case, the 
implementation to be conforming is required to satisfy the reduction relation, i.e. the inclusion 
of output traces must hold for every input trace. The classical FSM equivalence problem 
becomes then a special case of the FSM reduction problem. A nondeterministic machine is 
evidently a more versatile paradigm for describing the protocol behavior than a deterministic 
one. A nondeterministic machine can represent, for example, a 'loose' description of the 
required behavior which contains options left for the protocol implementation. Most existing 
protocols allow these options. The nondeterministic machine paradigm is also useful for 
embedded testing. As shown in (Petrenko, Yevtushenko, and Dssouli, 1994) and (Petrenko, 
Yevtushenko, Bochmann, and Dssouli, 1996), testing a deterministic FSM embedded within a 
given system of communicating FSMs can be reduced to that of an appropriate 
nondeterministic FSM. Thus, the test derivation problem for the reduction relation is of both, 
theoretical and practical interests.  
 Not much work, however, has been done to solve this problem. In (Petrenko, Yevtushenko, 
Lebedev, and Das, 1993), it is demonstrated that the problem can be solved at least for a 
narrow subclass of nondeterministic FSMs. In this paper, we present a refined method for test 
derivation based on that work and analysis of properties of the product of the specification and 
implementation machines. The method is now extended to cover more general FSMs. Called 
the 'State-Counting method' (as in the previous work), it handles an arbitrary observable FSM 
which can be deterministic or not, completely or partially specified, and guarantees complete 
fault coverage within a given class of deterministic implementations with respect to the 
reduction relation. We also undertake a more profound study on state distinguishability in the 
context of the reduction relation. 
 This paper is organized as follows. Section 2 contains basic notions and definitions related 
to the model of a nondeterministic FSM. In Section 3, we present the SC-method for deriving 
test suites complete w.r.t. the reduction relation. The method is then extended in Section 4 to 
partially specified machines. In the concluding section, we discuss further research problems. 
 
 
2  PRELIMINARIES 
 



A finite state machine (FSM), often simply called a machine throughout this paper, is an 
initialized observable (possibly nondeterministic) Mealy machine which can be formally 
defined as follows. A finite state machine A is a 5-tuple (S, X, Y, h, s0), where S is a finite set 
of n states with s0 as the initial state; X - a finite set of input symbols; Y - a finite set of output 
symbols; and h - a behavior function h: SXP(SY), where P(SY) is the set of all 
nonempty subsets of SY, such that |{s' | (s',y) �h(s,x)}|≤1 for all (s,x)�SX and all y�Y. 
(Starke, 1972). The machine A becomes deterministic when |h(s,x)|=1 for all (s,x)�SX. In a 
deterministic FSM, instead of the behavior function which is required for expressing a 
nondeterministic behavior, we use two functions: the next state function , and the output 
function .  
 We extend the behavior function to a function on the set X* of all input sequences 
containing the empty sequence , i.e., h: SX*P(SY*). For convenience, we use the same 
notation h for the extended function, as well, since in our discussions, this does not imply any 
contradiction. Assume h(s,) = {(s,)} for all s�S, and suppose that h(s,) is already specified. 
Then h(s,x) = { (s',y) |  s''�S [(s'',�h(s,) & (s',y)�h(s'',x)] }. 
 The function h has two projections: the first projection h1 and the second projection h2, 
where h1(s,) = { s' |  �Y* [(s',) �h(s,)] } and h2(s,) = { |  s' �S [(s',) �h(s,)] }, for 

all �X*. Given s�S, �X*, �Y*, we use h
1
(s,) to denote a state (if exists) where the input 

sequence takes the FSM A from s producing the output sequence .  
 Let s�S, �X* and �h2(s,). We say that the I/O sequence /visits state s' from the state 

s if there exists a nonempty prefix /of/such thath
1
(s,) = s'. In the case of a 

deterministic FSM A, we say that an input sequence applied at the state s visits state s' of A 
if a non-empty prefix of  is a transfer sequence from the state s to state s'. Given states s, 
s'�S, a sequence �X* such that h1(s,)s' is a transfer sequence from s to s'. If h1(s,)={s'} 
then  is said to be a deterministic transfer sequence from s to s'. A state s is called d-
reachable if there exits a deterministic transfer sequence from s0 to s. For any state s, the 
empty sequence is a deterministic transfer sequence from s to s, therefore any FSM has at 
least one d-reachable state, namely the initial state. A set of (deterministic) transfer sequences 
from the initial state s0 to all the (d-reachable) states of A is a (deterministic) cover of the FSM 
A. We consider here only connected machines. Given an FSM A = (S, X, Y, h, s0), A is said to 
be connected if for any state s�S, there exists a transfer sequence �X* from s0 to s. In this 
paper, we use two types of covers for test derivation from an FSM. We use a traditional cover 
(often called a state cover set), defined as a set of transfer sequences used to take the machine 
A from the initial state to every its state. Note that, due to possible nondeterminism of the 
given machine, a single input sequence of a cover may serve as a transfer sequence for a 
number of states. We also use a deterministic cover VA for the given FSM A. Obviously, in the 
class of deterministic machines, the two notions of a cover coincide.  
 To construct deterministic transfer sequences, we delete outputs from the FSM A and apply 
a standard technique for determinizing of the obtained automaton (Hopcroft and Ullman, 
1979). A state s is a d-reachable state in A if and only if there exists a set {s} among the states 
of the deterministic automaton. An input sequence that takes the automaton to the state {s} is 
a deterministic transfer sequence from the initial state to the state s in the FSM A.  
 Given two states s of the FSM A and t of the FSM B= (T, X, Y, H, t0), state t is said to be a 
reduction of s, written t≤s, if, for all input sequences  �X*, the condition H2(t,) ⁄ h2(s,) 



holds; otherwise t is not a reduction of s, written t s. States s and t are equivalent, st, iff s≤t 
and t≤s. On the class of deterministic machines, the relations coincide. We will also use 
weaker versions of equivalence and reduction relations, namely the E-equivalence and E-
reduction, as well as their negations w.r.t. a given set E of input sequences, E⁄X*; we use E, 
≤E, E and E, to denote these relations, respectively. Given two machines, A and B, B is a 
reduction of A, written B≤A, if the initial state of B is a reduction of the initial state of A. 
Similarly, the equivalence relation between machines is defined, BA, iff B≤A and A≤B. 
 Theorem 2.1. Given an FSM A, let B be a deterministic FSM over the same input alphabet. 
If B≤A then, for each state t of B, there exists a state s of A such that t≤s and, for each d-
reachable state s of A, there exists a state t of B such that t≤s. 
 
 Unlike to the case of deterministic FSMs, not every state of the nondeterministic FSM 
should correspond to some state of its reduction. However, as is established in Theorem 2.1, 
each d-reachable state of the FSM must have a corresponding state. Moreover, different states 
of the nondeterministic FSM may correspond to the same state of its reduction. The situation 
is similar to the case of compatible states of a partial deterministic FSM in context of state 
minimization (Grasselli and Luccio, 1965). We now establish necessary and sufficient 
conditions when two states of the FSM cannot correspond to a single state in any deterministic 
reduction of the FSM. 
 Given an FSM A, states s and r of A are said to be r(1)-distinguishable if there exists an 
input x�X such that h2(s,x)h2(r,x) = �. Suppose we have determined all the pairs of r(j)-
distinguishable states for j=1,…,k-1; k>1. States s and r of A are said to be r(k)-
distinguishable if they are r(j)-distinguishable, j<k, or there exists an input x�X such that for 

every output y�h2(s,x)h2(r,x) states hy
1
(s,x) and hy

1
(r,x) are r(j)-distinguishable, j<k. Two 

states are said to be r-distinguishable if there exists an integer k such that the states are r(k)-

distinguishable. Since the set S of states of A is finite there exists k ≤Cn
2 such that the sets of 

pairs of r(k)-distinguishable and r(k+1)-distinguishable states coincide. By definition, any two 
separable states of the FSM A, i.e. states s,r�S for which there exists an input sequence �X* 
such that h2(s,)  h2(r,) = � (Starke, 1972), are r-distinguishable. 
 Theorem 2.2. Given an FSM A and states s and r of A, let B  be a deterministic FSM over 
the same input alphabet as A. If there exists a state of B that is a reduction of the states s and r 
then the states s and r are not r-distinguishable. 
 Proof. Let B = (T, X, Y, , , t0). 1. If there exists a state t of B, t≤s, t≤r, then the states s 
and r are not r(1)-distinguishable.  
 2. Assumption of induction. Let the statement of Theorem hold for all integers less than k, 
k>1, i.e. if a state of B is a reduction of the states s and r then the states s and r are not r(j)-
distinguishable, for each j, j<k. 
 3. Suppose now that the states s and r are r(k)-distinguishable and there exists a state t of B, 
t≤s, t≤r. Then there exists an input x�X such that for every output y�h2(s,x)h2(r,x) states 
hy

1
(s,x) and hy

1
(r,x) are r(j)-distinguishable, j<k. If t is a reduction of s and r then the state 

t'=(t,x) of B should be a reduction of the states hy
1
(s,x) and hy

1
(r,x), where 

y=(t,x)�h2(s,x)h2(r,x). The latter contradicts the assumption of induction. Thus, if t is a 
reduction of states s and r then they are not r(k)-distinguishable for any k, i.e. they are not r-
distinguishable.  

 



 Combining Theorem 2.2 with the results of (Damiani, 1994), we have the following fact. A 
state of a deterministic FSM is not a reduction of two states of the FSM A if and only if these 
states are r-distinguishable. 
 The definition of r-distinguishable states implies an inductive procedure for constructing a 
set of input sequences r-distinguishing two given states s and r of the FSM A. We use W(s,r) 
to denote this set. For any deterministic FSM B over the same input alphabet as A and any 
state t of B, the state t is not a reduction of both states s and r w.r.t. the set W(s,r). The 
procedure for constructing W(s,r) resembles that for determining the compatibility of states in 
a partial deterministic FSM (Grasselli and Luccio, 1965). We omit details, due to space 
constraints. 
 Based on the determined sets W(s,r) for all pairs of r-distinguishable states, we define a so-
called 'r-identifier' of a state of the FSM A as a set of sequences that r-distinguish the given 
state from any other r-distinguishable state of A. The union of r-distinguishing sets W(si,sj) 
over all states sj of the FSM A that are r-distinguishable with si is said to be a (harmonized) r-
identifier Wi of state si. The case |Wi|=1 resembles the notion of a UIO-sequence used in 
literature for deterministic FSMs. The set Wi becomes empty when state si cannot be r-
distinguished from any other state. We define a family of harmonized r-identifiers as the set 
{Wi| si�S} and further call it simply a family of r-identifiers of the FSM A. The union of r-
identifiers over all states of the FSM A is said to be an r-characterization set W of A. It is a 
generalization of a classical notion of a characterization set of a deterministic machine 
(Kohavi, 1978). 
 The equivalence and reduction relations serve the conformance relations between 
implementations and their FSM specifications for deriving test suites. Let a specification FSM 
A be defined over an input alphabet X. We assume that all potential implementations are 
represented by a set (X,Y') of deterministic FSMs defined over alphabets X and Y' 
(sometimes called a fault domain). A universal set of all deterministic FSMs with at most m 
states over input alphabet X  is denoted by m(X).  
 A test suite is a finite set E of finite input sequences of the FSM A. A test suite E is said to 
be complete for A w.r.t. the reduction relation in the class (X,Y') iff, for all B�(X,Y'), B A 
implies B EA. A test suite is said to be m-complete for A if it is complete in the fault domain 
m(X). 
 Theorem 2.3. Given a specification FSM A over alphabets X and Y, a fault domain (X,Y) 
and a complete test suite E w.r.t. the reduction relation in the class (X,Y), let �E be an 
input sequence where is an sequence of length L, such that, for each output sequence of A 

to ,the set of output sequences of A to at the state h
1
(s0,) contains each sequence of Y* of 

length L. The complete test suite E reduced by replacing the sequence with  is complete 
in (X,Y). 
 
 Thus, in the case where implementations are known to preserve the output alphabet of their 
specification, a test suite can be reduced. We will, however, consider a more general case 
where the fault domain is the set m(X). 
 
 
3  CHECKING THE REDUCTION RELATION 
 



In this section, we give a refined version of the method for test derivation based on an early 
version outlined in (Petrenko, Yevtushenko, Lebedev, and Das, 1993) for a rather narrow 
subclass of FSMs where each state is a d-reachable and the relation of r-distinguishabilility 
only includes pairs of separable states. The method is now extended to cover FSMs with states 
which are not d-reachable. We preserve the name 'State-Counting method' (SC-method for 
short); the name reflects the fact that test derivation for reduction relation relies upon counting 
appropriate states rather than upon checking individual transitions in conventional methods for 
equivalence relation. Another new feature of the SC-method is that state identification is now 
based on a more subtle distinguishability of states which may be nonseparable. We think to 
have also found a more appropriate technique for presenting the main ideas of the method 
which helps us find new avenues for further optimizing tests with guaranteed fault coverage. 
Our technique is based upon properties of the product of given specification and 
implementation machines. 
3.1  Product of FSMs 
Let A be a given (possibly nondeterministic) specification FSM and B be a deterministic 
implementation FSM over the input alphabet of A. Suppose that the FSM B is known. Then, to 
verify whether or not the FSM B is a reduction of A, we construct the product AB. Its initial 
state is the pair of initial states of the two machines A and B, the remaining states are 
determined by performing a reachability analysis. For a conforming implementation machine 
B that is a reduction of A, the output of the FSM B belongs to a set of outputs of A for any 
reachable state of the product and any input. The two machines, B and AB are equivalent. If, 
however, B is not a reduction of A then there exists a reachable state of AB and an input x 
such that the output of B is not in the set of outputs of A. In this situation, the machines cannot 
agree on any common output and the product is said to produce a special output 'fail'. If the 
product at state (s,t) produces the output 'fail' to an input x then we assume that the input x 
takes AB from the state (s,t) to a designated state 'Fail', called the fail-state. A sequence 
distinguishing B from A is a transfer sequence taking the product AB from the initial state to 
the fail-state.  
 Formally, we define a product as follows. Let A = (S, X, Y, h, s0) be a given (possibly 
nondeterministic) specification FSM and B = (T, X, Y', , , t0) be a deterministic 
implementation FSM. We define a machine (ST{Fail}, X, Y{fail}, , , s0t0), where for 
all (s,t)�ST, x�X,  

(st,x) = [h(s,x )
1

(s,x),(s,x)] and (st,x) = (t,x) if h2(s,x)(t,x);  
otherwise (st,x) = Fail and (st,x) = fail. 
(Fail,x) = Fail and (Fail, x) = fail, for all x�X. 
 We use Q to denote the set of all states of this machine reachable from the initial state. 
Then (Q, X, Y{fail}, , , q0), where q0 = s0t0, is called the product AB.  
 Assume now that we are required to test an unknown implementation FSM B against a 
given specification FSM A. We only know that the FSM B belongs to a given fault domain. 
Suppose that we could enumerate all machines in a given fault domain. Then a test suite for 
the FSM A complete in the fault domain could be obtained in a straightforward manner. In 
particular, for each FSM B, we construct the product AB and determine at least one input 
sequence that takes the product from the initial state to the fail-state, whenever B is a 
nonconforming implementation machine. The union of such sequences for all machines in the 
fault domain gives a desired test suite. Such a solution can be costly, moreover, all the 



machines of the fault domain are simply not possible to enumerate in a realistic situation. 
There is a need for another approach that does not require each possible implementation 
machine separately.  
 The idea behind such an approach is based on the existence of certain properties shared by 
all input sequences causing, at least once, the output 'fail' in the product AB for each non-
conforming FSM B of the given fault domain. As we shall show, based on these properties, a 
complete test suite can be derived without explicitly enumerating machines of a fault domain.  
  
3.2  M-complete cover of an FSM 
Given an FSM A = (S, X, Y, h, s0), a set of input sequences of A is said to be an m-complete 
cover for the FSM A if it is a cover of the product AB for any FSM B�m(X). We use Cm to 
denote an m-complete cover for A. 
 Lemma 3.1. Given an FSM A and an m-complete cover Cm for A, the set Cm is an m-
complete test suite for A. 
 Given the FSM A with n states and any B�m(X), the number of states in the product AB 
does not exceed mn+1 and any state of this machine is reachable from its initial state by an 
input sequence whose length does not exceed mn. Thus, the set Xmn of all input sequences of 
length up to mn, is an m-complete cover for the FSM A with n states and, according to Lemma 
3.1, an m-complete test suite for the FSM A (Petrenko, Yevtushenko, Lebedev, and Das, 
1993). 
 Given a set of states PQ of the product AB and state q', a sequence  is a transfer 
sequence from P to q', if there exists a state q�P such that  is a transfer sequence from q to 
q'. If the length of the transfer sequence  from P to q' does not exceed that of any other 
sequence from P to q' then  is said to be a minimal transfer sequence from P to q'.  
 Let ß be the set of all d-reachable states of A and VA be a deterministic cover of the FSM A 
such that |VA|=|ß|. We use P(VA) to denote the set of states where the sequences of VA take the 
product AB from the initial state q0. The set P(VA) contains |ß| states. Let also i�VA denote 
a deterministic transfer sequence of the FSM A from the initial state to a d-reachable state si. 
Since the product has at most mn+1 states, length of a minimal transfer sequence from the set 
P(VA) to any reachable state of the product does not exceed mn-|P(VA)|+1 = mn-|ß|+1. 
Therefore, the union of the sets iXmn-|ß|+1 over all sequences i�VA is a cover of the product 
machine AB. It is also an m-complete cover for the FSM A, since B is an arbitrary FSM of 
the set m(X).  
 Theorem 3.2. Given an FSM A, let VA be a deterministic cover, and ß be the set of all d-
reachable states of A. Then the set VAXmn-|ß|+1 is an m-complete test suite for the FSM A.  
 
 A test suite of Theorem 3.2 can often be reduced by deleting certain sequences from the set 
Xmn-|ß|+1. Let B�m(X). Given an input sequence , if among the states, visited by the transfer 
sequence from a certain state of the set P(VA) to the fail-state of the product, either a state of 
the set P(VA) occurs or one state appears more than once, then the sequence is not a minimal 
transfer sequence from P(VA) to the fail-state and can therefore be reduced. Based on this 
property of minimal transfer sequences from the set P(VA), we can construct an m-complete 
test suite for A as follows. 



 For any d-reachable state sj�ß, we determine the traversal set Cm(sj) of input sequences as 
follows. An input sequence  is included into the set Cm(sj)if, for each sequence �h2(sj,), 
there exists a d-reachable state s�ß visited by /exactly m times from the state sj or there 
exists a state s�S\ß visited by /exactly m+1 times while, for any proper prefix ' of there 
exists '�h2(sj,') such that the property does not hold for the sequence '/'.  
 We use jCm(sj) to denote the result of concatenation of a sequence j�VA that takes the 
FSM A from the initial state to the state sj�ß, with all sequences of the set Cm(sj)  
 Theorem 3.3. Given an FSM A, a deterministic cover VA of A, the union E of sets jCm(sj) 
over all j�VA is an m-complete test suite for A. 
 Proof. Let B�m(X) be a deterministic FSM and P(VA) be a set of states where the 
sequences from the set VA take the product AB from the initial state. If the state Fail�P(VA) 
then an appropriate sequence �VA is a transfer sequence from the initial state to the state 
Fail, and by construction, the state Fail is visited by an appropriate sequence of the set E. 
Assume then that Fail�P(VA). Let an input sequence x applied at some state (sj,tj)�P(VA) be 
a minimal transfer sequence from P(VA) to Fail, i.e. the sequence jxtakes the product AB 
from the initial state to the fail-state and  be the output sequence of B to at the state tj. Since 
xis a minimal transfer sequence from P(VA) to the state Fail, the pair /is an I/O sequence 
of A at the state sj.Moreover, the sequence applied at the state (sj,tj)�P(VA) is a minimal 
transfer sequence from P(VA) to the state q of AB, where takes the product machine from 
the state (sj,tj). 
 Suppose that the sequence /applied at the state sj visits l times a state s�ß of the FSM A 
and lm. In this case, the sequence applied at the state (sj,tj) visits l states (s,t1),...,(s,tl) of the 
product AB. Since the FSM B has at most m states and the set P(VA) contains a pair (s,t) for 
an appropriate state t of the FSM B, among these states either a state from the set P(VA) occurs 
or at least one state appears more than once. In the both cases, the sequence  is not a minimal 
transfer sequence from P(VA) to q.  
 Similar to this,  is not a minimal transfer sequence from P(VA) to q if visits l times a 
state s�S\ß of the FSM A and lm+1. Thus, the sequence is a proper prefix of an appropriate 
sequence of the set Cm(sj) and there exists a sequence j�E with a prefix jxthat visits the 
state Fail from the initial state of the product AB.  

 
 Compared to Theorem 3.2, Theorem 3.3 offers a more economical way of constructing an 
m-complete test suite. To assure that a set of input sequences of the specification FSM A visits 
the state Fail of the product AB for any B�m(X) we include in the traversal set Cm(sj) each 
input sequence if there may exist a product machine AB, B�m(X), such that the 
sequencemay turn to be a minimal transfer sequence from P(VA) to Fail. A sequence 
�Cm(sj) is expanded by appending all inputs until it visits an appropriate state s of the FSM 
A m or m+1 times for each output sequence of A to at the state sj. The size of the traversal 
sets Cm(sj) is exponential and it is, therefore, important to determine cases where their 
sequences can be terminated as early as possible. For a specification FSM such that none of its 
states are r-distinguishable and no state is a reduction of any other state, it seems nearly 



impossible to reduce the size of the traversal sets. Certain sufficient conditions enforcing an 
earlier termination of sequences of the traversal sets Cm(sj) can be established provided that a 
given specification FSM A has r-distinguishable states. 
 
3.3  Reducing traversal sets 
Let an FSM A have states, say, s1 and s2, r-distinguished by a set W(s1,s2) of input sequences. 
Given an FSM B, let the product AB have states (s1,t) and (s2,t) for an appropriate state t of 
the FSM B. Then we refer to these states as to conflicting states. Due to the properties of the 
set W(s1,s2), there exists an input sequence �W(s1,s2) such that the output response of B to 
the input sequence at the state t is not in the set of output sequences of the FSM A to at 
least at one of states s1 and s2. Thus, the input sequence takes the product AB at least from 
one of the states (s1,t) and (s2,t) to the fail-state. In other words, if a transfer sequence  
applied at some state of the product visits the two conflicting states, the sequence  applied at 
(s1,t) or (s2,t) could be used as a shortcut to reach the fail-state in this product.  
 We now analyze a string of states visited by a minimal transfer sequence from the set of 
states P(VA) to the fail-state of the product AB and establish sufficient conditions when the 
set of states visited by the  along with states of the set P(VA), contains conflicting states.  
 Lemma 3.4. Given FSMs A and B, B�m(X), a set D of pairwise r-distinguishable states of 
A together with its subset ∂ of d-reachable states, let an input sequence �applied at 
some state (s,t)�P(VA) be a minimal transfer sequence from P(VA) to the fail-state of AB and 
 be the output response of B to the sequence applied at the state t. If the I/O sequence /, 
applied at the state s of A, visits states of D more than m-|∂| times then the set of states visited 
by the ,applied at the state (s,t) of AB, together with the states of P(VA), contains 
conflicting states (s1,t') and (s2,t'), s1,s2�D. 
 Proof. Let B=(T, X, Y, , , t0)�m(X), and the sequence  applied at a state (s,t)�P(VA) 
be a minimal transfer sequence from P(VA) to the fail-state of AB and = (t,). Then the 
pair /is an I/O sequence of the FSM A. Suppose that the I/O sequence /applied at the 
state s of A visits l times states of D and l>m-|∂|. In this case, the sequence applied at the 
state (s,t) traverses l states (s1,t1),...,(sl,tl) of the product, where si�D, i=1,…,l. Since the FSM 
B has at most m states, among the states (s1,t1),...,(sm-|∂|+1,tm-|∂|+1) combined with states of the 
set {(s',t')| s'�∂}P(VA), there can be at most m states with pairwise distinct states of the FSM 
B The set P(VA) contains at least |∂| distinct pairs (s',t'), s'�D. Thus, at least two states in the 
union of the sets {(si,ti)| i=1,...,m-|∂|+1} and {(s',t'), s'�∂}P(VA) have the same state of B. 
Because of being a minimal transfer sequence from P(VA) to the fail-state, the corresponding 
two states of the product cannot coincide. Thus, among the states (s1,t1), ..., (sm-|∂|+1,tm-|∂|+1) 
visited by and states of the set P(VA), there exist two distinct states (s1,t') and (s2,t'), 
s1,s2�D, for an appropriate state t' of the FSM B.  

 
 Let be an input sequence. We denote m(j), where j�VA, the set of all 
implementation FSMs B�m(X) such that an input sequence with the prefix applied at the 



state (sj,tj)�P(VA) is a minimal transfer sequence from P(VA) to the fail-state of the product 
AB. Based on Lemma 3.4, the following statement can be established. 
 Lemma 3.5. Given FSM A, an input sequence an r-characterization set W and a d-
reachable state sj of A, let for each �h2(sj,), there exists a set D of pairwise r-distinguishable 
states of A such that the I/O sequence /, applied at the state sj of A, visits states of D more 
than m-|∂| times, where ∂ is the subset of d-reachable states of D. Then the union of the sets 
iWover alli�VA and the sets j'W over all nonempty prefixes ' of is a test suite 
complete for A in the class m(j). 
 The lemma states that replacing an exponential expansion (Theorem 3.3.) of an input 
sequence for which the conditions of Lemma 3.5 hold, by a certain polynomial set of input 
sequences preserves the fault coverage. Thus, an m-complete test suite can now be obtained as 
a union of corresponding sets over all d-reachable states of A and input sequences satisfying 
Lemma 3.5. However, a test suite complete in the class m(j) can often be reduced if we 
use a family of state r-identifiers instead of an r-characterization set W. The procedure for 
deriving a test suite Tm(j) complete for A in the class m(j) for the sequence satisfying 
Lemma 3.5, includes the following steps. 
  
1. Find a deterministic cover VA of the FSM A.  
2. For each i�VA, that takes the FSM A from the initial state to a d-reachable state si, 
concatenate i with every sequence of the set Wi. Let E be the union of obtained sets over all 
i�VA. 
3. For each nonempty prefix ' of the sequence determine h1(s0,j'). Then concatenate j' 
with all sequences of every Wi, si�h1(sj,j'). Let j(@{Wi| si�S}) denote the result of  this 
concatenation.  
4. Find the union Tm(j) of E and j(@{Wi| si�S}. 
 
 Theorem 3.6. Given an FSM A, let Tm(j) be the set of input sequences derived from A 
by the above procedure. Then the set Tm(j) is a complete test suite for the FSM A in the 
class m(j).  
 Proof. Let B=(T, X, Y, , , t0)�m(j), the sequence  applied at a state (sj,tj)�P(VA) 
be a minimal transfer sequence from P(VA) to the fail-state of AB and =(t,). If = then 
Fail�P(VA). If the state Fail�P(VA) then an appropriate sequence �VA is a transfer sequence 
from the initial state to the state Fail. Let then ≠. Then  is an I/O sequence of A. The 
sequence satisfies the conditions of Lemma 3.5; therefore, there exists a set D of pairwise r-
distinguishable states of A such that the I/O sequence /, applied at the state sj of A, visits 
states of D more than m-|∂| times. Due to Lemma 3.4, among the states visited by  applied at 
state (sj,tj) and states of the set P(VA), there exist two distinct states (s1,t) and (s2,t), s1,s2�D, 
for an appropriate state t of the FSM B. Thus, among sequences VA and sequences j', where 
' is a nonempty prefix of , there exist sequences ' and '' that take the product to the states 
(s1,t) and (s2,t), where s1,s2�D. The states s1 and s2 of A are r-distinguished by an appropriate 
sequence �W1W2 and, by construction, ',''�Tm(j). Thus, at least one of the two 
sequences, 'or ''takes the product to the fail-state.  



 
 
3.4  The SC-Method 
Based on Theorem 3.6, an m-complete test suite can now be derived as the union of test suites 
complete in classes m(j) over all sequences j�VA and all input sequences such that, for 
d-reachable state sj of A and each sequence �h2(sj,), there exists a set D of pairwise r-
distinguishable states of A such that the I/O sequence /, applied at the state sj of A, visits 
states of D more than m-|∂| times. The SC-method for constructing an m-complete test suite 
includes the following steps. 
 
1. Find a deterministic cover VA of the FSM A.  
2. Find all pairs of r-distinguishable states of A and determine all maximal sets D1,...,Dk of 
pairwise r-distinguishable states. For each Dr, r=1,...,k, find a maximal subset ∂r of d-
reachable states.  
3. Construct a family {Wi| si�S} of r-identifiers of A. 
4. For any d-reachable state sj, derive the traversal set Trm(sj) as follows. An input sequence  
is included into the set Trm(sj)if, for each sequence �h2(sj,), there exists a set Dr such that 
its states are visited by /exactly (m-|∂r|+1) times from the state sj.  
5. For each traversal set Trm(sj) and every sequence �Trm(sj), construct the test suite Tm(j) 
complete in the class m(j), by use of the above given procedure (Section3.3). 
6. Find the union E of Tm(j) for all j�VA and �Trm(sj) (note that each sequence that is a 
prefix of another sequence can be deleted from E to simplify the result). 
 
 Theorem 3.7. Given an FSM A, let E be the set of input sequences derived from A by the 
SC-method. Then the set E is an m-complete test suite for the FSM A.  
 Proof. Consider an m-complete test suite VAXmn-|ß|+1 from Lemma 3.2. Let B�m(X), and 
the sequence , �Xmn-|ß|+1, applied at some state (sj,tj) be a minimal transfer sequence from 
P(VA) to the fail-state of AB. Determine a minimal prefix  of  such that �Trm(sj). Due to 
Theorem 3.6, a test suite Tm(j)E contains an input sequence that takes the product AB to 
the fail-state.  

 
 Example. We consider the FSM A shown in Figure 1. State 3 cannot be deterministically 
reached from the initial state 1, all the other states are d-reachable. We choose a minimal d-
reachable state cover set VA={, a, ab}, the empty sequence  serves a transfer sequence for 
the initial state, a for state 2, and ab for state 4. Next, we check whether the states are r-
distinguishable. The sequence a r-distinguishes states 2 and 3; the sequence aa r-distinguishes 
states 1 and 2; aaa - states 1 and 3. States 2 and 4 are r-distinguished by the sequence b; the 
states 3 and 4 - by the sequence bb. States 1 and 4 are not separable but they are r-
distinguished by the set {aaa, ab} of input sequences. In fact, there are two common output 
responses x and y of A to the input a at the states 1 and 4. The I/O sequence a/x takes the FSM 
A from the states 1 and 4 to the states 2 and 4 which are separated by the input sequence b 
while the I/O sequence a/y takes the FSM A from the states 1 and 4 to the states 2 and 1, 
respectively, which are r-distinguished by the input sequence aa. 
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Figure 1 An FSM A. 

 States 1,2, 3, and 4 form a single maximal set D of pairwise r-distinguishable states and W1 
= {aaa, ab}, W2 = {aa, b}, W3 = {a, bb}, and W4 = {aaa, ab, bb}. State 3 is not a d-reachable 
state, so the subset of pairwise r-distinguishable d-reachable states is ∂ = {1,2,4}. We assume 
that the number of states in any implementation is at most four (m=4) and proceed by 
determining traversal sets for d-reachable states. The termination rule for expanding input 
sequences becomes m-|∂ |+1 = 4-3+1=2, in other words, states from D should be visited twice 
before any input sequence can be terminated. Since D contains all the states of the FSM A, it is 
required to apply X2 at each d-reachable state, thus Tr4(i)={a,b}2, for each i=1,2,4. The union 
of complete test suites T4(i) over all sequences j, j�VA,  �Tr4(j) is an m-complete test 
suite (m=4). As an example, consider the sequence aab�a{a,b}2. One can assure that h1(1,a) 
= {2}, and so the sequence a should be concatenated with W2; h1(1,aa) = {1,3} and the 
sequence aa is concatenated with W1W3; h1(1,aab) = {1,2}, thus, the sequence aab is 
concatenated with W1W2.  
 
 
4  EXTENSION TO PARTIALLY SPECIFIED MACHINES 
 
The model of partially specified finite state machines is useful for describing the behavior of 
systems where transitions out of certain states on some inputs are not defined, these are 'don't 
care' transitions. Implementation machines are usually assumed to be completely specified. 
Implementing a partial specification amounts to completing it in a certain way. The model 
defined in Section 2 is, in fact, a completely specified (complete) finite state machine. Now 
we formally define a partial FSM (PFSM) and generalize the reduction and equivalence 
relations. 
 A partial finite state machine A is an observable partial FSM, i.e. 6-tuple (S, X, Y, h, s0, 
DA), where S is a set of states with s0 as the initial state; X - a finite set of input symbols; Y - a 
finite set of output symbols; DA - a specification domain, DA  S X; and h - a behavior 
function h: DA P(SY) such that |{s' | (s',y) �h(s,x)}|≤1 for all (s,x)�DA and all y�Y. 
Replacing DA by S X, we obtain a complete FSM. 
 Any I/O sequence specified in an observable machine takes it from its initial state to a 
unique state. However, in a nondeterministic machine, a specified input sequence may lead to 
several states. Generally speaking, these states may have different unspecified inputs. Here, 
we restrict ourselves to a class of machines with so-called harmonized traces (Petrenko, 
Yevtushenko, Lebedev, and Das, 1993). States of such a machine once reached from the initial 
state with the same specified transfer sequence have the same set of specified (unspecified) 
inputs. Figure 2 shows an example of a partial machine with harmonized traces. Each input 



sequences specified at the initial state of such machine does not execute any 'don't care' 

transition. We use X A
*
 to denote the set of all sequences specified at the initial state. 

 To test a machine against its PFSM specification, we have to compare the I/O behaviors of 
a complete implementation FSM B = (T, X, Y, H, t0) and a partial specification FSM A (S, X, 
Y, h, s0, DA).  
 An FSM B is a quasi-reduction of a PFSM A, written B≤quasiA, iff for all input sequences  

�X A
*
 the condition H2t0,)  h2(s0,) holds; otherwise B quasiA. 

 An FSM B is quasi-equivalent to a PFSM A, written BquasiA, iff for all input sequences  

�X A
*
 the condition H2t0,) = h2(s0,) holds; otherwise B quasiA. This relation originates 

from the quasi-equivalence relation introduced in (Gill, 1962) for deterministic machines 
which corresponds to a so-called weak conformance (Sidhu and Leung, 1989), (Yannakakis 
and Lee, 1995). On the class of deterministic machines, quasi-reduction and quasi-equivalence 
coincide. 
 According to definitions of quasi-equivalence and quasi-reduction relations, deriving test 
suites, we should omit input sequences on which the behavior of the specification machine is 

not defined. Thus, all complete test suites can be determined as subsets of the set X A
*
. With 

this exception, the definitions of complete test suites for partial machines repeat that for 
complete machines. 
 A partial machine A with harmonized traces can often be treated as a special complete 
nondeterministic machine a by treating its transitions on unspecified inputs as 'don't care' 
transitions to a trap state (Unger, 1969). Such transitions are labeled with an input not 
specified at the current state of A and all outputs of some superset of Y. The superset Y' of Y 
represents all outputs in the class of implementation machines. The trap state has looping 
transitions labeled with all inputs in X and all outputs. Input sequences leading a into the trap 

state are sequences not specified in A, they constitute the set X*\X A
*
. The machine a is said to 

be the completed form of A. The completed form of a PFSM reflects a rather general 
completeness assumption, namely 'undefined by default', used in protocol testing (Petrenko, 
Bochmann, and Dssouli, 1993). Figure 2 shows an example. Here 'any' stands for an arbitrary 
output in Y', a 'black hole' represents a trap state. The completed form is necessary 
nondeterministic even when a given machine is deterministic. 
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Figure 2 A PFSM A with harmonized traces and its completed form. 

 By construction, the completed form a of a PFSM A with harmonized traces is a machine 
that is quasi-equivalent to A. In fact, for every input sequence specified in A, the sets of output 
sequences produced by their initial states coincide, i.e. aquasiA. (It is not necessarily true for 
an arbitrary partial nondeterministic machine). Every deterministic machine has harmonized 



traces, therefore, the problem of test derivation from a partial deterministic FSM w.r.t. the 
quasi-equivalence relation and that for a complete nondeterministic FSM w.r.t. the reduction 
relation become equivalent problems. We have an even more general fact. 
 Theorem 4.1. Let a be the completed form of a partial machine A with harmonized traces. 
Assume that an FSM B over the same input and output alphabets is complete and 
deterministic. Then B≤quasiA if and only if B≤a. 
 Proof. I. B≤quasiA � B≤a. Let A = (S, X, Y, h, s0, DA) be a partial nondeterministic machine, 
a = (S, X, Y, h, s0, DA) be its completed form, and B = (T, X, Y, , , t0) be a complete 
deterministic machine. Assume that B≤quasiA, but B a. In this case, there exists an input 
sequence such that (t0,) �h2(s0,). By virtue of definition of the completed form, 

aquasiA, that is h2(s0,) = h2(s0,) for all input sequences �X A
*
 Assuming �X A

*
 leads us to 

a contradiction, as (t0,) �h2(s0,) and B is not a quasi-reduction of A. Suppose therefore 

that �X A
*
 and = , where �X A

*
 and �X*. A has harmonized traces, then its completed 

form a in each state of the set h1(s0,) produces in response to  all output sequences of the 
length of . Then (t0,) �h2(s0, ), and ((t0,),) �h2(s,) for any s�h1(s0,). This again 
leads us to a contradiction. 
II. B≤a � B≤quasiA. Assume that B≤a, but B quasiA. If B is not a quasi-reduction of A then 

there exists an input sequence �X A
*
 such that (t0,) � h2(s0,). aquasiA, it means that for 

all input sequences �X A
*
 the condition h2(s0,) = h2(s0,) holds. Thus, (t0,) �h2(s0,). A 

contradiction.  
 

Based on this theorem, the problem of test derivation from a partial FSM with harmonized 
traces w.r.t. the quasi-reduction relation can be reduced to that from its completed form w.r.t. 
reduction relation. The SC-method serves this purpose. It follows, however, from our 
discussions that the trap state does not require any identification (anyway, every other state is 
a reduction of the trap state) neither should transitions into the trap state be covered by a test 
suite. In other words, we have the following fact as a corollary to the above theorem. 
Corollary. Let E be a complete test suite for the completed form a of a partial machine A with 
harmonized traces for the reduction relation in the class of deterministic implementation 

machines. Then EX A
*
 is a complete test suite for A w.r.t. the quasi-reduction relation in the 

same class of implementations. 

 Note that constructing a complete test suite exclusively from the set X A
*
 of specified input 

sequences becomes essential in situations where undefined transitions are treated as 
'forbidden' transitions, as explained in (Yevtushenko and Petrenko, 1990), (Petrenko, 1991), 
(Petrenko and Yevtushenko, 1992), (Luo, Petrenko, and Bochmann, 1994), and (Yannakakis 
and Lee, 1995). The difference from the latter work is that we consider here a wider class of 
partial machines that are not necessarily reduced. (Yannakakis and Lee, 1995) gives no 
solution for partial machines with compatible, i.e. indistinguishable states, but our method is 
fully applicable to such machines. 
 
 
5  CONCLUSION  
 



We have presented a refined version of the test derivation method (SC-method) which, for a 
given FSM, generates a test suite in the context of the reduction relation. The SC-method is 
proven to provide full fault coverage on the pre-determined class of deterministic 
implementations. It can be applied to various classes of specification FSMs, including 
partially specified machines with compatible states provided that they are observable. This 
limitation is by no means prohibitive, as any FSM with harmonized traces has an equivalent 
observable form. Our method follows a new principle of constructing test sequences, namely 
counting appropriate states visited by test sequences, unlike conventional methods that strictly 
follow the transition checking principle.  
 Next step in this direction would be to further elaborate the proposed approach taking into 
account, for example, that the reduction relation may hold between a number of states in a 
given specification machine, all these states can correspond to a single state of an 
implementation FSM. It is also interesting to establish which states of a specification machine 
(along with d-reachable states) should have a corresponding state in an implementation FSM.  
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