

Testing deterministic implementations from
nondeterministic FSM specifications

A. Petrenko 1, N. Yevtushenko 2, and G. v. Bochmann 3

1 CRIM, Centre de Recherche Informatique de Montréal,
1801 Avenue McGill College, Montréal, H3A 2N4, Canada,
Phone: (514) 398-3054, Fax: (514) 398-1244
petrenko@crim.ca

2 Tomsk State University, 36 Lenin str., Tomsk, 634050, Russia,
yevtushenko@elephot.tsu.tomsk.su

3 Université de Montréal,
CP. 6128, Succ. Centre-Ville, Montréal, H3C 3J7, Canada,
Phone: (514) 343-7535, Fax: (514) 343-5834,
bochmann@iro.umontreal.ca

Abstract
In this paper, conformance testing of protocols specified as nondeterministic finite state
machines is considered. Protocol implementations are assumed to be deterministic. In this
testing scenario, the conformance relation becomes a preorder, so-called reduction relation
between FSMs. The reduction relation requires that an implementation machine produces a
(sub)set of output sequences that can be produced by its specification machine in response to
every input sequence. A method for deriving tests with respect to the reduction relation with
full fault coverage for deterministic implementations is proposed based on certain properties
of the product of specification and implementation machines.

Keywords
Conformance testing, test derivation, fault detection, I/O nondeterministic FSMs, equivalence
and reduction relations

1 INTRODUCTION

Conformance testing of protocol implementations is often formalized as the FSM equivalence
problem (Moore, 1956) and (Hennie, 1964). In particular, we are given two machines defined
over the same input alphabet, one is referred to as the specification machine, the other is
referred to as the implementation machine. The latter is treated as a black-box, so little is
usually known about the implementation machine prior to testing; yet one typically assumes
an upper bound on the number of its states (Gill, 1962). It is required to determine by testing
whether the two are equivalent. A corresponding test suite is said to be complete with respect
to equivalence relation in the class of implementation machines within the assumed bound on
the number of states. The problem of deriving such a test suite for a given deterministic
specification machine has recently attracted close attention in the literature (Vasilevski, 1973),
(Chow, 1978), (Sidhu and Leung, 1989), (Fujiwara, Bochmann et al. 1991), (Ural, 1992),
(Bochmann and Petrenko, 1994), (Yannakakis and Lee, 1995), and (Petrenko and Bochmann,
1996). Here we take a step further addressing a more general problem of testing a so-called
reduction relation between FSMs (Petrenko, Bochmann, and Dssouli, 1993) and (Petrenko,
Yevtushenko, and Bochmann, 1994). Specifically, we assume that an implementation machine
is deterministic, but its specification machine is not necessarily deterministic. In this case, the
implementation to be conforming is required to satisfy the reduction relation, i.e. the inclusion
of output traces must hold for every input trace. The classical FSM equivalence problem
becomes then a special case of the FSM reduction problem. A nondeterministic machine is
evidently a more versatile paradigm for describing the protocol behavior than a deterministic
one. A nondeterministic machine can represent, for example, a 'loose' description of the
required behavior which contains options left for the protocol implementation. Most existing
protocols allow these options. The nondeterministic machine paradigm is also useful for
embedded testing. As shown in (Petrenko, Yevtushenko, and Dssouli, 1994) and (Petrenko,
Yevtushenko, Bochmann, and Dssouli, 1996), testing a deterministic FSM embedded within a
given system of communicating FSMs can be reduced to that of an appropriate
nondeterministic FSM. Thus, the test derivation problem for the reduction relation is of both,
theoretical and practical interests.
 Not much work, however, has been done to solve this problem. In (Petrenko, Yevtushenko,
Lebedev, and Das, 1993), it is demonstrated that the problem can be solved at least for a
narrow subclass of nondeterministic FSMs. In this paper, we present a refined method for test
derivation based on that work and analysis of properties of the product of the specification and
implementation machines. The method is now extended to cover more general FSMs. Called
the 'State-Counting method' (as in the previous work), it handles an arbitrary observable FSM
which can be deterministic or not, completely or partially specified, and guarantees complete
fault coverage within a given class of deterministic implementations with respect to the
reduction relation. We also undertake a more profound study on state distinguishability in the
context of the reduction relation.
 This paper is organized as follows. Section 2 contains basic notions and definitions related
to the model of a nondeterministic FSM. In Section 3, we present the SC-method for deriving
test suites complete w.r.t. the reduction relation. The method is then extended in Section 4 to
partially specified machines. In the concluding section, we discuss further research problems.

2 PRELIMINARIES

A finite state machine (FSM), often simply called a machine throughout this paper, is an
initialized observable (possibly nondeterministic) Mealy machine which can be formally
defined as follows. A finite state machine A is a 5-tuple (S, X, Y, h, s0), where S is a finite set
of n states with s0 as the initial state; X - a finite set of input symbols; Y - a finite set of output
symbols; and h - a behavior function h: SXP(SY), where P(SY) is the set of all
nonempty subsets of SY, such that |{s' | (s',y) �h(s,x)}|≤1 for all (s,x)�SX and all y�Y.
(Starke, 1972). The machine A becomes deterministic when |h(s,x)|=1 for all (s,x)�SX. In a
deterministic FSM, instead of the behavior function which is required for expressing a
nondeterministic behavior, we use two functions: the next state function , and the output
function .
 We extend the behavior function to a function on the set X* of all input sequences
containing the empty sequence , i.e., h: SX*P(SY*). For convenience, we use the same
notation h for the extended function, as well, since in our discussions, this does not imply any
contradiction. Assume h(s,) = {(s,)} for all s�S, and suppose that h(s,) is already specified.
Then h(s,x) = { (s',y) | s''�S [(s'',�h(s,) & (s',y)�h(s'',x)] }.
 The function h has two projections: the first projection h1 and the second projection h2,
where h1(s,) = { s' | �Y* [(s',) �h(s,)] } and h2(s,) = { | s' �S [(s',) �h(s,)] }, for

all �X*. Given s�S, �X*, �Y*, we use h
1
(s,) to denote a state (if exists) where the input

sequence takes the FSM A from s producing the output sequence .
 Let s�S, �X* and �h2(s,). We say that the I/O sequence /visits state s' from the state

s if there exists a nonempty prefix /of/such thath
1
(s,) = s'. In the case of a

deterministic FSM A, we say that an input sequence applied at the state s visits state s' of A
if a non-empty prefix of is a transfer sequence from the state s to state s'. Given states s,
s'�S, a sequence �X* such that h1(s,)s' is a transfer sequence from s to s'. If h1(s,)={s'}
then is said to be a deterministic transfer sequence from s to s'. A state s is called d-
reachable if there exits a deterministic transfer sequence from s0 to s. For any state s, the
empty sequence is a deterministic transfer sequence from s to s, therefore any FSM has at
least one d-reachable state, namely the initial state. A set of (deterministic) transfer sequences
from the initial state s0 to all the (d-reachable) states of A is a (deterministic) cover of the FSM
A. We consider here only connected machines. Given an FSM A = (S, X, Y, h, s0), A is said to
be connected if for any state s�S, there exists a transfer sequence �X* from s0 to s. In this
paper, we use two types of covers for test derivation from an FSM. We use a traditional cover
(often called a state cover set), defined as a set of transfer sequences used to take the machine
A from the initial state to every its state. Note that, due to possible nondeterminism of the
given machine, a single input sequence of a cover may serve as a transfer sequence for a
number of states. We also use a deterministic cover VA for the given FSM A. Obviously, in the
class of deterministic machines, the two notions of a cover coincide.
 To construct deterministic transfer sequences, we delete outputs from the FSM A and apply
a standard technique for determinizing of the obtained automaton (Hopcroft and Ullman,
1979). A state s is a d-reachable state in A if and only if there exists a set {s} among the states
of the deterministic automaton. An input sequence that takes the automaton to the state {s} is
a deterministic transfer sequence from the initial state to the state s in the FSM A.
 Given two states s of the FSM A and t of the FSM B= (T, X, Y, H, t0), state t is said to be a
reduction of s, written t≤s, if, for all input sequences �X*, the condition H2(t,) ⁄ h2(s,)

holds; otherwise t is not a reduction of s, written t s. States s and t are equivalent, st, iff s≤t
and t≤s. On the class of deterministic machines, the relations coincide. We will also use
weaker versions of equivalence and reduction relations, namely the E-equivalence and E-
reduction, as well as their negations w.r.t. a given set E of input sequences, E⁄X*; we use E,
≤E, E and E, to denote these relations, respectively. Given two machines, A and B, B is a
reduction of A, written B≤A, if the initial state of B is a reduction of the initial state of A.
Similarly, the equivalence relation between machines is defined, BA, iff B≤A and A≤B.
 Theorem 2.1. Given an FSM A, let B be a deterministic FSM over the same input alphabet.
If B≤A then, for each state t of B, there exists a state s of A such that t≤s and, for each d-
reachable state s of A, there exists a state t of B such that t≤s.

 Unlike to the case of deterministic FSMs, not every state of the nondeterministic FSM
should correspond to some state of its reduction. However, as is established in Theorem 2.1,
each d-reachable state of the FSM must have a corresponding state. Moreover, different states
of the nondeterministic FSM may correspond to the same state of its reduction. The situation
is similar to the case of compatible states of a partial deterministic FSM in context of state
minimization (Grasselli and Luccio, 1965). We now establish necessary and sufficient
conditions when two states of the FSM cannot correspond to a single state in any deterministic
reduction of the FSM.
 Given an FSM A, states s and r of A are said to be r(1)-distinguishable if there exists an
input x�X such that h2(s,x)h2(r,x) = �. Suppose we have determined all the pairs of r(j)-
distinguishable states for j=1,…,k-1; k>1. States s and r of A are said to be r(k)-
distinguishable if they are r(j)-distinguishable, j<k, or there exists an input x�X such that for

every output y�h2(s,x)h2(r,x) states hy
1
(s,x) and hy

1
(r,x) are r(j)-distinguishable, j<k. Two

states are said to be r-distinguishable if there exists an integer k such that the states are r(k)-

distinguishable. Since the set S of states of A is finite there exists k ≤Cn
2 such that the sets of

pairs of r(k)-distinguishable and r(k+1)-distinguishable states coincide. By definition, any two
separable states of the FSM A, i.e. states s,r�S for which there exists an input sequence �X*
such that h2(s,) h2(r,) = � (Starke, 1972), are r-distinguishable.
 Theorem 2.2. Given an FSM A and states s and r of A, let B be a deterministic FSM over
the same input alphabet as A. If there exists a state of B that is a reduction of the states s and r
then the states s and r are not r-distinguishable.
 Proof. Let B = (T, X, Y, , , t0). 1. If there exists a state t of B, t≤s, t≤r, then the states s
and r are not r(1)-distinguishable.
 2. Assumption of induction. Let the statement of Theorem hold for all integers less than k,
k>1, i.e. if a state of B is a reduction of the states s and r then the states s and r are not r(j)-
distinguishable, for each j, j<k.
 3. Suppose now that the states s and r are r(k)-distinguishable and there exists a state t of B,
t≤s, t≤r. Then there exists an input x�X such that for every output y�h2(s,x)h2(r,x) states
hy

1
(s,x) and hy

1
(r,x) are r(j)-distinguishable, j<k. If t is a reduction of s and r then the state

t'=(t,x) of B should be a reduction of the states hy
1
(s,x) and hy

1
(r,x), where

y=(t,x)�h2(s,x)h2(r,x). The latter contradicts the assumption of induction. Thus, if t is a
reduction of states s and r then they are not r(k)-distinguishable for any k, i.e. they are not r-
distinguishable.

 Combining Theorem 2.2 with the results of (Damiani, 1994), we have the following fact. A
state of a deterministic FSM is not a reduction of two states of the FSM A if and only if these
states are r-distinguishable.
 The definition of r-distinguishable states implies an inductive procedure for constructing a
set of input sequences r-distinguishing two given states s and r of the FSM A. We use W(s,r)
to denote this set. For any deterministic FSM B over the same input alphabet as A and any
state t of B, the state t is not a reduction of both states s and r w.r.t. the set W(s,r). The
procedure for constructing W(s,r) resembles that for determining the compatibility of states in
a partial deterministic FSM (Grasselli and Luccio, 1965). We omit details, due to space
constraints.
 Based on the determined sets W(s,r) for all pairs of r-distinguishable states, we define a so-
called 'r-identifier' of a state of the FSM A as a set of sequences that r-distinguish the given
state from any other r-distinguishable state of A. The union of r-distinguishing sets W(si,sj)
over all states sj of the FSM A that are r-distinguishable with si is said to be a (harmonized) r-
identifier Wi of state si. The case |Wi|=1 resembles the notion of a UIO-sequence used in
literature for deterministic FSMs. The set Wi becomes empty when state si cannot be r-
distinguished from any other state. We define a family of harmonized r-identifiers as the set
{Wi| si�S} and further call it simply a family of r-identifiers of the FSM A. The union of r-
identifiers over all states of the FSM A is said to be an r-characterization set W of A. It is a
generalization of a classical notion of a characterization set of a deterministic machine
(Kohavi, 1978).
 The equivalence and reduction relations serve the conformance relations between
implementations and their FSM specifications for deriving test suites. Let a specification FSM
A be defined over an input alphabet X. We assume that all potential implementations are
represented by a set (X,Y') of deterministic FSMs defined over alphabets X and Y'
(sometimes called a fault domain). A universal set of all deterministic FSMs with at most m
states over input alphabet X is denoted by m(X).
 A test suite is a finite set E of finite input sequences of the FSM A. A test suite E is said to
be complete for A w.r.t. the reduction relation in the class (X,Y') iff, for all B�(X,Y'), B A
implies B EA. A test suite is said to be m-complete for A if it is complete in the fault domain
m(X).
 Theorem 2.3. Given a specification FSM A over alphabets X and Y, a fault domain (X,Y)
and a complete test suite E w.r.t. the reduction relation in the class (X,Y), let �E be an
input sequence where is an sequence of length L, such that, for each output sequence of A

to ,the set of output sequences of A to at the state h
1
(s0,) contains each sequence of Y* of

length L. The complete test suite E reduced by replacing the sequence with is complete
in (X,Y).

 Thus, in the case where implementations are known to preserve the output alphabet of their
specification, a test suite can be reduced. We will, however, consider a more general case
where the fault domain is the set m(X).

3 CHECKING THE REDUCTION RELATION

In this section, we give a refined version of the method for test derivation based on an early
version outlined in (Petrenko, Yevtushenko, Lebedev, and Das, 1993) for a rather narrow
subclass of FSMs where each state is a d-reachable and the relation of r-distinguishabilility
only includes pairs of separable states. The method is now extended to cover FSMs with states
which are not d-reachable. We preserve the name 'State-Counting method' (SC-method for
short); the name reflects the fact that test derivation for reduction relation relies upon counting
appropriate states rather than upon checking individual transitions in conventional methods for
equivalence relation. Another new feature of the SC-method is that state identification is now
based on a more subtle distinguishability of states which may be nonseparable. We think to
have also found a more appropriate technique for presenting the main ideas of the method
which helps us find new avenues for further optimizing tests with guaranteed fault coverage.
Our technique is based upon properties of the product of given specification and
implementation machines.
3.1 Product of FSMs
Let A be a given (possibly nondeterministic) specification FSM and B be a deterministic
implementation FSM over the input alphabet of A. Suppose that the FSM B is known. Then, to
verify whether or not the FSM B is a reduction of A, we construct the product AB. Its initial
state is the pair of initial states of the two machines A and B, the remaining states are
determined by performing a reachability analysis. For a conforming implementation machine
B that is a reduction of A, the output of the FSM B belongs to a set of outputs of A for any
reachable state of the product and any input. The two machines, B and AB are equivalent. If,
however, B is not a reduction of A then there exists a reachable state of AB and an input x
such that the output of B is not in the set of outputs of A. In this situation, the machines cannot
agree on any common output and the product is said to produce a special output 'fail'. If the
product at state (s,t) produces the output 'fail' to an input x then we assume that the input x
takes AB from the state (s,t) to a designated state 'Fail', called the fail-state. A sequence
distinguishing B from A is a transfer sequence taking the product AB from the initial state to
the fail-state.
 Formally, we define a product as follows. Let A = (S, X, Y, h, s0) be a given (possibly
nondeterministic) specification FSM and B = (T, X, Y', , , t0) be a deterministic
implementation FSM. We define a machine (ST{Fail}, X, Y{fail}, , , s0t0), where for
all (s,t)�ST, x�X,

(st,x) = [h(s,x)
1

(s,x),(s,x)] and (st,x) = (t,x) if h2(s,x)(t,x);
otherwise (st,x) = Fail and (st,x) = fail.
(Fail,x) = Fail and (Fail, x) = fail, for all x�X.
 We use Q to denote the set of all states of this machine reachable from the initial state.
Then (Q, X, Y{fail}, , , q0), where q0 = s0t0, is called the product AB.
 Assume now that we are required to test an unknown implementation FSM B against a
given specification FSM A. We only know that the FSM B belongs to a given fault domain.
Suppose that we could enumerate all machines in a given fault domain. Then a test suite for
the FSM A complete in the fault domain could be obtained in a straightforward manner. In
particular, for each FSM B, we construct the product AB and determine at least one input
sequence that takes the product from the initial state to the fail-state, whenever B is a
nonconforming implementation machine. The union of such sequences for all machines in the
fault domain gives a desired test suite. Such a solution can be costly, moreover, all the

machines of the fault domain are simply not possible to enumerate in a realistic situation.
There is a need for another approach that does not require each possible implementation
machine separately.
 The idea behind such an approach is based on the existence of certain properties shared by
all input sequences causing, at least once, the output 'fail' in the product AB for each non-
conforming FSM B of the given fault domain. As we shall show, based on these properties, a
complete test suite can be derived without explicitly enumerating machines of a fault domain.

3.2 M-complete cover of an FSM
Given an FSM A = (S, X, Y, h, s0), a set of input sequences of A is said to be an m-complete
cover for the FSM A if it is a cover of the product AB for any FSM B�m(X). We use Cm to
denote an m-complete cover for A.
 Lemma 3.1. Given an FSM A and an m-complete cover Cm for A, the set Cm is an m-
complete test suite for A.
 Given the FSM A with n states and any B�m(X), the number of states in the product AB
does not exceed mn+1 and any state of this machine is reachable from its initial state by an
input sequence whose length does not exceed mn. Thus, the set Xmn of all input sequences of
length up to mn, is an m-complete cover for the FSM A with n states and, according to Lemma
3.1, an m-complete test suite for the FSM A (Petrenko, Yevtushenko, Lebedev, and Das,
1993).
 Given a set of states PQ of the product AB and state q', a sequence is a transfer
sequence from P to q', if there exists a state q�P such that is a transfer sequence from q to
q'. If the length of the transfer sequence from P to q' does not exceed that of any other
sequence from P to q' then is said to be a minimal transfer sequence from P to q'.
 Let ß be the set of all d-reachable states of A and VA be a deterministic cover of the FSM A
such that |VA|=|ß|. We use P(VA) to denote the set of states where the sequences of VA take the
product AB from the initial state q0. The set P(VA) contains |ß| states. Let also i�VA denote
a deterministic transfer sequence of the FSM A from the initial state to a d-reachable state si.
Since the product has at most mn+1 states, length of a minimal transfer sequence from the set
P(VA) to any reachable state of the product does not exceed mn-|P(VA)|+1 = mn-|ß|+1.
Therefore, the union of the sets iXmn-|ß|+1 over all sequences i�VA is a cover of the product
machine AB. It is also an m-complete cover for the FSM A, since B is an arbitrary FSM of
the set m(X).
 Theorem 3.2. Given an FSM A, let VA be a deterministic cover, and ß be the set of all d-
reachable states of A. Then the set VAXmn-|ß|+1 is an m-complete test suite for the FSM A.

 A test suite of Theorem 3.2 can often be reduced by deleting certain sequences from the set
Xmn-|ß|+1. Let B�m(X). Given an input sequence , if among the states, visited by the transfer
sequence from a certain state of the set P(VA) to the fail-state of the product, either a state of
the set P(VA) occurs or one state appears more than once, then the sequence is not a minimal
transfer sequence from P(VA) to the fail-state and can therefore be reduced. Based on this
property of minimal transfer sequences from the set P(VA), we can construct an m-complete
test suite for A as follows.

 For any d-reachable state sj�ß, we determine the traversal set Cm(sj) of input sequences as
follows. An input sequence is included into the set Cm(sj)if, for each sequence �h2(sj,),
there exists a d-reachable state s�ß visited by /exactly m times from the state sj or there
exists a state s�S\ß visited by /exactly m+1 times while, for any proper prefix ' of there
exists '�h2(sj,') such that the property does not hold for the sequence '/'.
 We use jCm(sj) to denote the result of concatenation of a sequence j�VA that takes the
FSM A from the initial state to the state sj�ß, with all sequences of the set Cm(sj)
 Theorem 3.3. Given an FSM A, a deterministic cover VA of A, the union E of sets jCm(sj)
over all j�VA is an m-complete test suite for A.
 Proof. Let B�m(X) be a deterministic FSM and P(VA) be a set of states where the
sequences from the set VA take the product AB from the initial state. If the state Fail�P(VA)
then an appropriate sequence �VA is a transfer sequence from the initial state to the state
Fail, and by construction, the state Fail is visited by an appropriate sequence of the set E.
Assume then that Fail�P(VA). Let an input sequence x applied at some state (sj,tj)�P(VA) be
a minimal transfer sequence from P(VA) to Fail, i.e. the sequence jxtakes the product AB
from the initial state to the fail-state and be the output sequence of B to at the state tj. Since
xis a minimal transfer sequence from P(VA) to the state Fail, the pair /is an I/O sequence
of A at the state sj.Moreover, the sequence applied at the state (sj,tj)�P(VA) is a minimal
transfer sequence from P(VA) to the state q of AB, where takes the product machine from
the state (sj,tj).
 Suppose that the sequence /applied at the state sj visits l times a state s�ß of the FSM A
and lm. In this case, the sequence applied at the state (sj,tj) visits l states (s,t1),...,(s,tl) of the
product AB. Since the FSM B has at most m states and the set P(VA) contains a pair (s,t) for
an appropriate state t of the FSM B, among these states either a state from the set P(VA) occurs
or at least one state appears more than once. In the both cases, the sequence is not a minimal
transfer sequence from P(VA) to q.
 Similar to this, is not a minimal transfer sequence from P(VA) to q if visits l times a
state s�S\ß of the FSM A and lm+1. Thus, the sequence is a proper prefix of an appropriate
sequence of the set Cm(sj) and there exists a sequence j�E with a prefix jxthat visits the
state Fail from the initial state of the product AB.

 Compared to Theorem 3.2, Theorem 3.3 offers a more economical way of constructing an
m-complete test suite. To assure that a set of input sequences of the specification FSM A visits
the state Fail of the product AB for any B�m(X) we include in the traversal set Cm(sj) each
input sequence if there may exist a product machine AB, B�m(X), such that the
sequencemay turn to be a minimal transfer sequence from P(VA) to Fail. A sequence
�Cm(sj) is expanded by appending all inputs until it visits an appropriate state s of the FSM
A m or m+1 times for each output sequence of A to at the state sj. The size of the traversal
sets Cm(sj) is exponential and it is, therefore, important to determine cases where their
sequences can be terminated as early as possible. For a specification FSM such that none of its
states are r-distinguishable and no state is a reduction of any other state, it seems nearly

impossible to reduce the size of the traversal sets. Certain sufficient conditions enforcing an
earlier termination of sequences of the traversal sets Cm(sj) can be established provided that a
given specification FSM A has r-distinguishable states.

3.3 Reducing traversal sets
Let an FSM A have states, say, s1 and s2, r-distinguished by a set W(s1,s2) of input sequences.
Given an FSM B, let the product AB have states (s1,t) and (s2,t) for an appropriate state t of
the FSM B. Then we refer to these states as to conflicting states. Due to the properties of the
set W(s1,s2), there exists an input sequence �W(s1,s2) such that the output response of B to
the input sequence at the state t is not in the set of output sequences of the FSM A to at
least at one of states s1 and s2. Thus, the input sequence takes the product AB at least from
one of the states (s1,t) and (s2,t) to the fail-state. In other words, if a transfer sequence
applied at some state of the product visits the two conflicting states, the sequence applied at
(s1,t) or (s2,t) could be used as a shortcut to reach the fail-state in this product.
 We now analyze a string of states visited by a minimal transfer sequence from the set of
states P(VA) to the fail-state of the product AB and establish sufficient conditions when the
set of states visited by the along with states of the set P(VA), contains conflicting states.
 Lemma 3.4. Given FSMs A and B, B�m(X), a set D of pairwise r-distinguishable states of
A together with its subset ∂ of d-reachable states, let an input sequence �applied at
some state (s,t)�P(VA) be a minimal transfer sequence from P(VA) to the fail-state of AB and
 be the output response of B to the sequence applied at the state t. If the I/O sequence /,
applied at the state s of A, visits states of D more than m-|∂| times then the set of states visited
by the ,applied at the state (s,t) of AB, together with the states of P(VA), contains
conflicting states (s1,t') and (s2,t'), s1,s2�D.
 Proof. Let B=(T, X, Y, , , t0)�m(X), and the sequence applied at a state (s,t)�P(VA)
be a minimal transfer sequence from P(VA) to the fail-state of AB and = (t,). Then the
pair /is an I/O sequence of the FSM A. Suppose that the I/O sequence /applied at the
state s of A visits l times states of D and l>m-|∂|. In this case, the sequence applied at the
state (s,t) traverses l states (s1,t1),...,(sl,tl) of the product, where si�D, i=1,…,l. Since the FSM
B has at most m states, among the states (s1,t1),...,(sm-|∂|+1,tm-|∂|+1) combined with states of the
set {(s',t')| s'�∂}P(VA), there can be at most m states with pairwise distinct states of the FSM
B The set P(VA) contains at least |∂| distinct pairs (s',t'), s'�D. Thus, at least two states in the
union of the sets {(si,ti)| i=1,...,m-|∂|+1} and {(s',t'), s'�∂}P(VA) have the same state of B.
Because of being a minimal transfer sequence from P(VA) to the fail-state, the corresponding
two states of the product cannot coincide. Thus, among the states (s1,t1), ..., (sm-|∂|+1,tm-|∂|+1)
visited by and states of the set P(VA), there exist two distinct states (s1,t') and (s2,t'),
s1,s2�D, for an appropriate state t' of the FSM B.

 Let be an input sequence. We denote m(j), where j�VA, the set of all
implementation FSMs B�m(X) such that an input sequence with the prefix applied at the

state (sj,tj)�P(VA) is a minimal transfer sequence from P(VA) to the fail-state of the product
AB. Based on Lemma 3.4, the following statement can be established.
 Lemma 3.5. Given FSM A, an input sequence an r-characterization set W and a d-
reachable state sj of A, let for each �h2(sj,), there exists a set D of pairwise r-distinguishable
states of A such that the I/O sequence /, applied at the state sj of A, visits states of D more
than m-|∂| times, where ∂ is the subset of d-reachable states of D. Then the union of the sets
iWover alli�VA and the sets j'W over all nonempty prefixes ' of is a test suite
complete for A in the class m(j).
 The lemma states that replacing an exponential expansion (Theorem 3.3.) of an input
sequence for which the conditions of Lemma 3.5 hold, by a certain polynomial set of input
sequences preserves the fault coverage. Thus, an m-complete test suite can now be obtained as
a union of corresponding sets over all d-reachable states of A and input sequences satisfying
Lemma 3.5. However, a test suite complete in the class m(j) can often be reduced if we
use a family of state r-identifiers instead of an r-characterization set W. The procedure for
deriving a test suite Tm(j) complete for A in the class m(j) for the sequence satisfying
Lemma 3.5, includes the following steps.

1. Find a deterministic cover VA of the FSM A.
2. For each i�VA, that takes the FSM A from the initial state to a d-reachable state si,
concatenate i with every sequence of the set Wi. Let E be the union of obtained sets over all
i�VA.
3. For each nonempty prefix ' of the sequence determine h1(s0,j'). Then concatenate j'
with all sequences of every Wi, si�h1(sj,j'). Let j(@{Wi| si�S}) denote the result of this
concatenation.
4. Find the union Tm(j) of E and j(@{Wi| si�S}.

 Theorem 3.6. Given an FSM A, let Tm(j) be the set of input sequences derived from A
by the above procedure. Then the set Tm(j) is a complete test suite for the FSM A in the
class m(j).
 Proof. Let B=(T, X, Y, , , t0)�m(j), the sequence applied at a state (sj,tj)�P(VA)
be a minimal transfer sequence from P(VA) to the fail-state of AB and =(t,). If = then
Fail�P(VA). If the state Fail�P(VA) then an appropriate sequence �VA is a transfer sequence
from the initial state to the state Fail. Let then ≠. Then is an I/O sequence of A. The
sequence satisfies the conditions of Lemma 3.5; therefore, there exists a set D of pairwise r-
distinguishable states of A such that the I/O sequence /, applied at the state sj of A, visits
states of D more than m-|∂| times. Due to Lemma 3.4, among the states visited by applied at
state (sj,tj) and states of the set P(VA), there exist two distinct states (s1,t) and (s2,t), s1,s2�D,
for an appropriate state t of the FSM B. Thus, among sequences VA and sequences j', where
' is a nonempty prefix of , there exist sequences ' and '' that take the product to the states
(s1,t) and (s2,t), where s1,s2�D. The states s1 and s2 of A are r-distinguished by an appropriate
sequence �W1W2 and, by construction, ',''�Tm(j). Thus, at least one of the two
sequences, 'or ''takes the product to the fail-state.

3.4 The SC-Method
Based on Theorem 3.6, an m-complete test suite can now be derived as the union of test suites
complete in classes m(j) over all sequences j�VA and all input sequences such that, for
d-reachable state sj of A and each sequence �h2(sj,), there exists a set D of pairwise r-
distinguishable states of A such that the I/O sequence /, applied at the state sj of A, visits
states of D more than m-|∂| times. The SC-method for constructing an m-complete test suite
includes the following steps.

1. Find a deterministic cover VA of the FSM A.
2. Find all pairs of r-distinguishable states of A and determine all maximal sets D1,...,Dk of
pairwise r-distinguishable states. For each Dr, r=1,...,k, find a maximal subset ∂r of d-
reachable states.
3. Construct a family {Wi| si�S} of r-identifiers of A.
4. For any d-reachable state sj, derive the traversal set Trm(sj) as follows. An input sequence
is included into the set Trm(sj)if, for each sequence �h2(sj,), there exists a set Dr such that
its states are visited by /exactly (m-|∂r|+1) times from the state sj.
5. For each traversal set Trm(sj) and every sequence �Trm(sj), construct the test suite Tm(j)
complete in the class m(j), by use of the above given procedure (Section3.3).
6. Find the union E of Tm(j) for all j�VA and �Trm(sj) (note that each sequence that is a
prefix of another sequence can be deleted from E to simplify the result).

 Theorem 3.7. Given an FSM A, let E be the set of input sequences derived from A by the
SC-method. Then the set E is an m-complete test suite for the FSM A.
 Proof. Consider an m-complete test suite VAXmn-|ß|+1 from Lemma 3.2. Let B�m(X), and
the sequence , �Xmn-|ß|+1, applied at some state (sj,tj) be a minimal transfer sequence from
P(VA) to the fail-state of AB. Determine a minimal prefix of such that �Trm(sj). Due to
Theorem 3.6, a test suite Tm(j)E contains an input sequence that takes the product AB to
the fail-state.

 Example. We consider the FSM A shown in Figure 1. State 3 cannot be deterministically
reached from the initial state 1, all the other states are d-reachable. We choose a minimal d-
reachable state cover set VA={, a, ab}, the empty sequence serves a transfer sequence for
the initial state, a for state 2, and ab for state 4. Next, we check whether the states are r-
distinguishable. The sequence a r-distinguishes states 2 and 3; the sequence aa r-distinguishes
states 1 and 2; aaa - states 1 and 3. States 2 and 4 are r-distinguished by the sequence b; the
states 3 and 4 - by the sequence bb. States 1 and 4 are not separable but they are r-
distinguished by the set {aaa, ab} of input sequences. In fact, there are two common output
responses x and y of A to the input a at the states 1 and 4. The I/O sequence a/x takes the FSM
A from the states 1 and 4 to the states 2 and 4 which are separated by the input sequence b
while the I/O sequence a/y takes the FSM A from the states 1 and 4 to the states 2 and 1,
respectively, which are r-distinguished by the input sequence aa.

1 2

3

a/x,y; b/y

a/z

a/y b/z

b/za/y,z

b/y

b/z

a/x b/y a/x

4

Figure 1 An FSM A.

 States 1,2, 3, and 4 form a single maximal set D of pairwise r-distinguishable states and W1
= {aaa, ab}, W2 = {aa, b}, W3 = {a, bb}, and W4 = {aaa, ab, bb}. State 3 is not a d-reachable
state, so the subset of pairwise r-distinguishable d-reachable states is ∂ = {1,2,4}. We assume
that the number of states in any implementation is at most four (m=4) and proceed by
determining traversal sets for d-reachable states. The termination rule for expanding input
sequences becomes m-|∂ |+1 = 4-3+1=2, in other words, states from D should be visited twice
before any input sequence can be terminated. Since D contains all the states of the FSM A, it is
required to apply X2 at each d-reachable state, thus Tr4(i)={a,b}2, for each i=1,2,4. The union
of complete test suites T4(i) over all sequences j, j�VA, �Tr4(j) is an m-complete test
suite (m=4). As an example, consider the sequence aab�a{a,b}2. One can assure that h1(1,a)
= {2}, and so the sequence a should be concatenated with W2; h1(1,aa) = {1,3} and the
sequence aa is concatenated with W1W3; h1(1,aab) = {1,2}, thus, the sequence aab is
concatenated with W1W2.

4 EXTENSION TO PARTIALLY SPECIFIED MACHINES

The model of partially specified finite state machines is useful for describing the behavior of
systems where transitions out of certain states on some inputs are not defined, these are 'don't
care' transitions. Implementation machines are usually assumed to be completely specified.
Implementing a partial specification amounts to completing it in a certain way. The model
defined in Section 2 is, in fact, a completely specified (complete) finite state machine. Now
we formally define a partial FSM (PFSM) and generalize the reduction and equivalence
relations.
 A partial finite state machine A is an observable partial FSM, i.e. 6-tuple (S, X, Y, h, s0,
DA), where S is a set of states with s0 as the initial state; X - a finite set of input symbols; Y - a
finite set of output symbols; DA - a specification domain, DA S X; and h - a behavior
function h: DA P(SY) such that |{s' | (s',y) �h(s,x)}|≤1 for all (s,x)�DA and all y�Y.
Replacing DA by S X, we obtain a complete FSM.
 Any I/O sequence specified in an observable machine takes it from its initial state to a
unique state. However, in a nondeterministic machine, a specified input sequence may lead to
several states. Generally speaking, these states may have different unspecified inputs. Here,
we restrict ourselves to a class of machines with so-called harmonized traces (Petrenko,
Yevtushenko, Lebedev, and Das, 1993). States of such a machine once reached from the initial
state with the same specified transfer sequence have the same set of specified (unspecified)
inputs. Figure 2 shows an example of a partial machine with harmonized traces. Each input

sequences specified at the initial state of such machine does not execute any 'don't care'

transition. We use X A
*
 to denote the set of all sequences specified at the initial state.

 To test a machine against its PFSM specification, we have to compare the I/O behaviors of
a complete implementation FSM B = (T, X, Y, H, t0) and a partial specification FSM A (S, X,
Y, h, s0, DA).
 An FSM B is a quasi-reduction of a PFSM A, written B≤quasiA, iff for all input sequences

�X A
*
 the condition H2t0,) h2(s0,) holds; otherwise B quasiA.

 An FSM B is quasi-equivalent to a PFSM A, written BquasiA, iff for all input sequences

�X A
*
 the condition H2t0,) = h2(s0,) holds; otherwise B quasiA. This relation originates

from the quasi-equivalence relation introduced in (Gill, 1962) for deterministic machines
which corresponds to a so-called weak conformance (Sidhu and Leung, 1989), (Yannakakis
and Lee, 1995). On the class of deterministic machines, quasi-reduction and quasi-equivalence
coincide.
 According to definitions of quasi-equivalence and quasi-reduction relations, deriving test
suites, we should omit input sequences on which the behavior of the specification machine is

not defined. Thus, all complete test suites can be determined as subsets of the set X A
*
. With

this exception, the definitions of complete test suites for partial machines repeat that for
complete machines.
 A partial machine A with harmonized traces can often be treated as a special complete
nondeterministic machine a by treating its transitions on unspecified inputs as 'don't care'
transitions to a trap state (Unger, 1969). Such transitions are labeled with an input not
specified at the current state of A and all outputs of some superset of Y. The superset Y' of Y
represents all outputs in the class of implementation machines. The trap state has looping
transitions labeled with all inputs in X and all outputs. Input sequences leading a into the trap

state are sequences not specified in A, they constitute the set X*\X A
*
. The machine a is said to

be the completed form of A. The completed form of a PFSM reflects a rather general
completeness assumption, namely 'undefined by default', used in protocol testing (Petrenko,
Bochmann, and Dssouli, 1993). Figure 2 shows an example. Here 'any' stands for an arbitrary
output in Y', a 'black hole' represents a trap state. The completed form is necessary
nondeterministic even when a given machine is deterministic.

2

a/y
a/y

a/x

b/yb/x

1 b/x,y

3 4
2

a/y
a/y

a/x

b/yb/x

1 b/x,y

3 4
a/any

b/anyb/any

a,b/any
Figure 2 A PFSM A with harmonized traces and its completed form.

 By construction, the completed form a of a PFSM A with harmonized traces is a machine
that is quasi-equivalent to A. In fact, for every input sequence specified in A, the sets of output
sequences produced by their initial states coincide, i.e. aquasiA. (It is not necessarily true for
an arbitrary partial nondeterministic machine). Every deterministic machine has harmonized

traces, therefore, the problem of test derivation from a partial deterministic FSM w.r.t. the
quasi-equivalence relation and that for a complete nondeterministic FSM w.r.t. the reduction
relation become equivalent problems. We have an even more general fact.
 Theorem 4.1. Let a be the completed form of a partial machine A with harmonized traces.
Assume that an FSM B over the same input and output alphabets is complete and
deterministic. Then B≤quasiA if and only if B≤a.
 Proof. I. B≤quasiA � B≤a. Let A = (S, X, Y, h, s0, DA) be a partial nondeterministic machine,
a = (S, X, Y, h, s0, DA) be its completed form, and B = (T, X, Y, , , t0) be a complete
deterministic machine. Assume that B≤quasiA, but B a. In this case, there exists an input
sequence such that (t0,) �h2(s0,). By virtue of definition of the completed form,

aquasiA, that is h2(s0,) = h2(s0,) for all input sequences �X A
*
 Assuming �X A

*
 leads us to

a contradiction, as (t0,) �h2(s0,) and B is not a quasi-reduction of A. Suppose therefore

that �X A
*
 and = , where �X A

*
 and �X*. A has harmonized traces, then its completed

form a in each state of the set h1(s0,) produces in response to all output sequences of the
length of . Then (t0,) �h2(s0,), and ((t0,),) �h2(s,) for any s�h1(s0,). This again
leads us to a contradiction.
II. B≤a � B≤quasiA. Assume that B≤a, but B quasiA. If B is not a quasi-reduction of A then

there exists an input sequence �X A
*
 such that (t0,) � h2(s0,). aquasiA, it means that for

all input sequences �X A
*
 the condition h2(s0,) = h2(s0,) holds. Thus, (t0,) �h2(s0,). A

contradiction.

Based on this theorem, the problem of test derivation from a partial FSM with harmonized
traces w.r.t. the quasi-reduction relation can be reduced to that from its completed form w.r.t.
reduction relation. The SC-method serves this purpose. It follows, however, from our
discussions that the trap state does not require any identification (anyway, every other state is
a reduction of the trap state) neither should transitions into the trap state be covered by a test
suite. In other words, we have the following fact as a corollary to the above theorem.
Corollary. Let E be a complete test suite for the completed form a of a partial machine A with
harmonized traces for the reduction relation in the class of deterministic implementation

machines. Then EX A
*
 is a complete test suite for A w.r.t. the quasi-reduction relation in the

same class of implementations.

 Note that constructing a complete test suite exclusively from the set X A
*
 of specified input

sequences becomes essential in situations where undefined transitions are treated as
'forbidden' transitions, as explained in (Yevtushenko and Petrenko, 1990), (Petrenko, 1991),
(Petrenko and Yevtushenko, 1992), (Luo, Petrenko, and Bochmann, 1994), and (Yannakakis
and Lee, 1995). The difference from the latter work is that we consider here a wider class of
partial machines that are not necessarily reduced. (Yannakakis and Lee, 1995) gives no
solution for partial machines with compatible, i.e. indistinguishable states, but our method is
fully applicable to such machines.

5 CONCLUSION

We have presented a refined version of the test derivation method (SC-method) which, for a
given FSM, generates a test suite in the context of the reduction relation. The SC-method is
proven to provide full fault coverage on the pre-determined class of deterministic
implementations. It can be applied to various classes of specification FSMs, including
partially specified machines with compatible states provided that they are observable. This
limitation is by no means prohibitive, as any FSM with harmonized traces has an equivalent
observable form. Our method follows a new principle of constructing test sequences, namely
counting appropriate states visited by test sequences, unlike conventional methods that strictly
follow the transition checking principle.
 Next step in this direction would be to further elaborate the proposed approach taking into
account, for example, that the reduction relation may hold between a number of states in a
given specification machine, all these states can correspond to a single state of an
implementation FSM. It is also interesting to establish which states of a specification machine
(along with d-reachable states) should have a corresponding state in an implementation FSM.

Acknowledgments
This research was partly supported by an NSERC strategic research grant and by the Russian
Found for Fundamental Research. The authors would like to thank the anonymous referees for
their comments that helped improve the presentation of this paper.

6 REFERENCES

Bochmann, v.G. and Petrenko, A. (1994) Protocol testing: review of methods and relevance

for software testing. ISSTA'94 ACM International Symposium on Software Testing and
Analysis. pp. 109-124

Chow, T. S. (1978) Testing software design modeled by finite-state machines. IEEE
Transactions on Software Engineering, Vol. SE-4, No 3, pp. 178-187.

Damiani, M. (1994) Nondeterministic finite-state machines and sequential don't cares.
Proceedings of the European Conference on Design&Test, pp. 192-198.

Fujiwara, S., Bochmann, v.G., Khendek, F., Amalou, M., and Ghedamsi, A. (1991) Test
selection based on finite state models. IEEE Transactions on Software Engineering, Vol.
SE-17, No. 6, pp. 591-603.

Gill, A. (1962) Introduction to the theory of finite-state machines, NY, McGraw-Hill, 270p.
Grasselli, A. and Luccio, F. (1965) A method for minimizing the number of internal states in

incompletely specified sequential networks. IEEE Transactions on Electronic
Computers, No. 6, pp. 350-359.

Hennie, F. C. (1964) Fault detecting experiments for sequential circuits. Proceedings of the
IEEE 5th Ann. Symp. on Switching Circuits Theory and Logical Design, pp. 95-110.

Hopcroft, J.E., and Ullman, J.D. (1979) Introduction to automata theory. languages and
computation. Addison-Wesley Publishing Company, Inc., 418 p.

Kohavi, Z. (1978) Switching and finite automata theory, N.Y., McGraw-Hill.
Luo, G., Petrenko, A., and Bochmann, v.G. (1994) Selecting test sequences for partially-

specified nondeterministic finite state machines. Protocol Test Systems VII (the

Proceedings of IFIP WG 6.1 International Workshop on Protocol Test Systems 1994),
Chapman & Hall, 1995, pp. 95-110.

Moore, E. F. (1956) Gedanken-experiments on sequential machines, Automata Studies,
Princeton University Press, Princeton, NJ, pp. 129-153.

Petrenko, A. (1991) Checking experiments with protocol machines. IFIP Transactions,
Protocol Test Systems, IV (the Proceedings of IFIP TC6 Fourth International Workshop
on Protocol Test Systems, 1991), 1992, North-Holland, pp. 83-94.

Petrenko, A. and Yevtushenko, N. (1992) Test suite generation for a fsm with a given type of
implementation errors. IFIP Transactions Protocol Specification, Testing, and
Verification XII (the Proceedings of IFIP TC6 12th International Symposium on
Protocol Specification, Testing, and Verification 1992), pp. 229-243.

Petrenko, A., Bochmann, v.G., and Dssouli, R. (1993) Conformance relations and test
derivation. IFIP Transactions Protocol Test Systems VI (the Proceedings of IFIP TC6
Fifth International Workshop on Protocol Test Systems,1993) North-Holland, 1994, pp.
157-178.

Petrenko, A., Yevtushenko, N., Lebedev, A., and Das, A. (1993) Nondeterministic state
machines in protocol conformance testing. IFIP Transactions Protocol Test Systems VI
(the Proceedings of IFIP TC6 Fifth International Workshop on Protocol Test Systems
1993), North-Holland, 1994, pp. 363-378.

Petrenko, A., Yevtushenko, N., and Dssouli, R. (1994) Testing strategies for communicating
fsms. Protocol Test Systems VII (the Proceedings of IFIP WG 6.1 International
Workshop on Protocol Test Systems, 1994) Chapman & Hall, 1995, pp. 193-208.

Petrenko, A., Yevtushenko, N., and Bochmann, v.G. (1994) Experiments on nondeterministic
systems for the reduction relation. Technical Report 932, Université de Montréal, 23p.

Petrenko, A. and Bochmann, v.G. (1996) On fault coverage of tests for finite state
specifications. To appear in a special issue on Protocol Testing of Computer Networks
and ISDN Systems.

Petrenko, A., Yevtushenko, N., Bochmann, v.G., and Dssouli, R. (1996) Testing in context:
framework and test derivation. Technical Report 1011, Université de Montréal, To
appear in a special issue on Protocol Engineering of Computer Communications Journal.

Starke, P. H. (1972) Abstract automata. North-Holland/American Elsevier, 419p.
Sidhu, D. P. and Leung, T. K. (1989) Formal methods for protocol testing: a detailed study.

IEEE Transactions on Software Engineering, Vol SE-15, No 4, pp. 413-426.
Vasilevski, M. P. (1973) Failure diagnosis of automata. Cybernetics, Plenum Publishing

Corporation, New York, No 4, pp. 653-665.
Unger, S. H. (1969) Asynchronous sequential switching circuits Wiley-Interscience.
Ural, H. (1992) Formal methods for test sequence generation. Computer Communications,

Vol. 15, No. 5, pp. 311-325.
Yannakakis, M. and Lee, D. (1995) Testing finite state machines: fault detection. Journal of

Computer and System Sciences, 50, pp. 209-227.
Yevtushenko, N. and Petrenko, A. (1989) Fault-detection capability of multiple experiments.

Automatic Control and Computer Sciences, Allerton Press, Inc., N.Y., Vol. 23, No. 3, pp.
7-11.

Yevtushenko, N. and Petrenko, A. (1990) A method of constructing a test experiment for an
arbitrary deterministic automaton. Automatic Control and Computer Sciences, Allerton
Press, Inc., N.Y., Vol. 24, No. 5, pp. 65-68.

7 BIOGRAPHY

Alexandre Petrenko received the Diploma degree in electrical and computer engineering
from Riga Polytechnic Institute in 1970 and the Ph.D. in computer science from the Institute
of Electronics and Computer Science, Riga, USSR, in 1974. In 1996, he has joined CRIM,
Centre de Recherche Informatique de Montréal, Canada. From 1992 to 1996, he was a visiting
professor/researcher of the Université de Montréal. From 1982 to 1992, he was the head of a
research department of the Institute of Electronics and Computer Science in Riga. From 1979
to 1982, he was with the Networking Task Force of the International Institute for Applied
Systems Analysis (IIASA), Vienna, Austria. From 1969 to 1979, he was a researcher and the
head of a research department of the Institute of Electronics and Computer Science in Riga.
His current research interests include high-speed networks, communication software
engineering, formal methods, conformance testing, and testability.

Nina Yevtushenko received the Diploma degree in radio-physics in 1971 and Ph. D. in
computer science in 1983, both from the Tomsk State University, Russia. She is currently a
Professor at that University. Her research interests include the automata and FSM theory and
testing problems.

Gregor v. Bochmann received the Diploma degree in physics from the University of Munich,
Munich, West Germany, in 1968 and the Ph.D. degree from McGill University, Montreal,
P.Q., Canada, in 1971. He has worked in the areas of programming languages, compiler
design, communication protocols, and software engineering and has published many papers in
these areas. He holds the Hewlett-Packard-NSERC-CITI chair of industrial research on
communication protocols in the Département d'informatique et de recherche opérationnelle,
Université de Montréal. His present work is aimed at design methods for communication
protocols and distributed systems. He has been actively involved in the standardization of
formal description techniques for OSI. He is presently one of the scientific directors of the
Centre de Recherche Informatique de Montréal (CRIM).

